
Thermochimica Acta, 60 (1983) 303-318 
Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands 

303 

APPLICATION OF NON-EQUILIBRIUM THERMODYNAMICS TO 
PROBLEMS OF THERMAL ANALYSIS * 

G. KLUGE, H. EICHHORN, K. HEIDE and M. FRITSCHE 

Friedrich-Schiller-Universitiit Jena, DDR-6900 Jena (D.D.R.) 

(Received 23 June 1982) 

ABSTRACT 

On the basis of non-equilibrium thermodynamics, the kinetic equations of thermal analysis 
are derived for several important chemical consecutive and concurrent reactions. These 
equations are solved analytically and numerically and the obtained solutions are discussed. 
Hereby hints are obtained for the further development of thermal methods. It is shown that, 
in most cases, the kinetics of coupled chemical reactions can only be determined with special 

selective methods. 

INTRODUCTION 

The development of analytical techniques has provided the possibility of 
determining the conversion of a sample under non-isothermal conditions 
with high quality. In the last ten years, experimental conditions have been 
improved so that the thermodynamic and kinetic parameters can, in many 
cases, be determined directly from the experimental results. To take further 
advantage of this development, it is also necessary to improve both the 
theoretical basis of the models and the analytical determination of the 
reaction-specific quantities. In this field, the theory of non-isothermal reac- 
tions has also made significant progress. A detailed review was presented by 
Koch in 1977 [ 11. 

Nevertheless, the interpretation of experimental results is not entirely 
satisfactory. The various theoretical models and experiments are one reason 
for the incomparability of results. Furthermore, it is often possible to 
describe one experiment with the same statistical significance by various 
theoretical models. In this situation, it is necessary to answer the question 
what requirements of analytical techniques have to be fulfilled in order to 
determine the reaction kinetics and the parameters involved in a correct way. 

* Parts of this paper were presented at the 2nd ESTA, Aberdeen, 1981. 
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A reliable criterion for the interpretation of measurements is not available at 
present. However, such a criterion is necessary for the development of 
analytical equipment to control the technology of non-isothermal industrial 
processes and to obtain unambiguous information from the experimental 
investigation in laboratories. The solution of these problems is important 
from the point of view of the optimum use of both energy and raw materials. 
This paper outlines a theoretical concept of a uniform treatment of non-iso- 
thermal analysis experiments on the basis of non-equilibrium thermody- 
namics with the aim of improving further experimental equipment. 

THEORETICAL BASIS 

The basic equations 

Equation of mass balances 
In a homogeneous system with K components B, (i = 1, 2, . . . K), R 

chemical reactions take place with the stoichiometric equations 

M, K 

i=l i=M,+, 

On the left-hand side of eqn. (l), there are the reactants B, to B, and on the 
right-hand side, the reaction products BM,+, to B,. AH, is the reaction 
enthalpy of the Y th reaction. In the course of the chemical reaction, the 
concentrations ci of reactants B,( ci = pi/p, where pi = the mass density of the 
reactant Bi, p = the total mass density, and p = CiK_lpi) change with time. 
The rates of the mass changes can be described with the aid of the mass 
balance equation 

(2) 

where w, is the rate of the r th chemical reaction, Ma, the mylar mass and J’,, 
the diffusion flux of the component Bi. The diffusion flux JB, and the rate of 
the chemical reaction o, depend on the temperature. Therefore the heat 
conduction must be taken into consideration in the calculation of the 
concentrations. 

However, under certain conditions, the diffusion and heat conduction 
produce only small effects compared with the chemical reactions. In this 
case, the following assumptions can be made. 

(a) The sample is homogeneous. (In this case the concentrations ck are 
functions of the time only, the diffusion fluxes vanish, and we therefore 
confine ourselves to homogeneous reactions.) 

(b) The heat conduction of the sample is large enough or the sample so 
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small that the temperature is constant throughout the sample and that a 
time-dependent change of the temperature in the surroundings also takes 
place inside the sample without delay. 

(c) The surroundings absorb (or give up) the reaction heat so quickly that 
thermal equilibrium is always maintained. The last two assumptions permit 
us to neglect heat conduction. Therefore we may consider the temperature as 
a given function of time [T = T(r)]. We often use linear time dependence of 
the temperature (T = TO + qt where TO = initial temperature and q = heating 
rate). With all these assumptions, we obtain from eqn. (2) 

p$$= q,g = 5 o,(T,c) vkrMB, 
r=l 

For the integration of this system of ordinary differential equations, we need 
the initial concentrations and the reaction rates u,( T,c). In the following we 
will discuss the temperature and concentration dependences of w,. 

First, it should be mentioned that the assumptions (a)-(c) are the basis for 
the equation often used in the literature 

S=K(T) f(cu) 

Constitutive equations 

The rate of a chemical reaction, w, depends on thermodynamic and 
kinetic quantities. The thermodynamic quantities are given by the chemical 
affinity A = Zvipi, where pi is the molar chemical potential of the compo- 
nent B,. For real mixtures it has the form 

p;=g;(p,T)+RTlna, (5) 

where gi = molar Gibbs enthalpy, a, = activity ( ai = x;f;), x, = mole fraction, 
and fi = activity coefficient of component B;. It is useful to separate the 
affinity into two parts: A+ for the forward reaction and A - for the reverse 

reaction 

AZ/L--A+ 

A+ = - $ yipi, A-= i 
“iPi (6) 

I= I i=M+ 1 

The dependence of the reaction rate on the affinity can be described by the 
non-linear equation [2] 

w=A(e A+/RT _ eA-/RT 
1 (7) 

where A is a phenomenological coefficient. 
In the case of chemical equilibrium, w = 0, eqn. (7) [together with eqn. (5)] 
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in the form 

i 

M K 

w = A eAg+/RT n ‘.qc _ eAgm/RT 

I-I .I 

a: =o (8) 
i=l i=M+l 

where Ag+ = - 5 vigi and Ag- = 5 vjgj yields the law of mass action 
K i=l i=M+ 1 

n a; = K( p,~) = e-AgIRT 

i=I 
(9) 

Here, Ag = Ag- - Ag+ and Ag = Ah - TAs which contains the molar reac- 
tion enthalpy Ah and the molar reaction entropy As. Both quantities can be 
separated, like Ag, into parts related to the reactants, Ah+ and As+, and the 
products, Ah- and As-, with Ah = Ah- -Ah+ and As = As- -As+. 

The phenomenological coefficient, A, in eqn. (7) depends on the state 
variables T, p, xi and describes the influence of kinetic quantities on the 
reaction rate. To obtain the connection with the relations for the velocity 
constants in the field of reaction kinetics (Arrhenius concept [3]), we state 

(10) 
Thereby it follows for the velocity constants- of the forward reaction, K+ , 
and the reverse reaction, K- 

Ag+ As*+ E+ E+ 
K+=Aez=Xe-R -- 

-_ 
e RT=kie RT 

K-_~e~=~e-$ e zT---k e Er 
-- _ 0 -- 01) 

with the activation energies 

E+=Ah’-Ah+ 

E- = Ah0 - Ah- (14 

and the activation entropies 

As *+ = As+ -As“ 

As*- = As- - As0 (13) 

The activation entropies are connected with the “steric” factors. These 
results can be compared with those obtained in the theory of the transient 
state in the field of reaction kinetics [3]. It follows that Ah0 and As0 have to 
be interpreted as molar standard enthalpy and entropy of activation. 

The temperature dependence of h is given by 

X = X,TY 

In most cases, this dependence can be neglected just as the influence 
pressure. Therefore the reaction rate, w, becomes 

of 
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and with the eqn. (11) 

w=K+(T) fi Lz;‘-K(T) i a; (15) 
i= 1 /=M+I 

When several chemical reactions take place, the phenomenological equations 
are given by (neglecting cross effects) 

A+ Am 
-!- 

Cd,= A,(eRT -eRT -) (16) 

Furthermore, we confine ourselves to ideal mixtures with f, = 1 and a, = x,. 

Kinetic equations 

With regard to the assumptions (uniform system without diffusion f= 0 
and convection v’= 0, ideal mixtures), the mass balance reads 

(17) 

Equation (17) describes the progress of the chemical reaction and enables an 
accurate calculation of the time dependence on the concentration to be 

made. 
To obtain uniform solutions of eqn. (17) it is necessary to know the initial 

concentration, c,O, and the time dependence of the temperature. For simple 

reactions, it is possible to find analytical solutions. It is often useful to 
introduce a progress variable, <,, for each reaction because in this way a 
decoupling or a partial decoupling of the differential equations is attained. 
The progress variables 4, are connected with the reaction rate 

Hence eqn. (3) becomes 

d Ck -= 
dt 

This integrates to 
R 

with 5, = 0 at the start of reaction (t = 0). 5 is proportional to 

(18) 

(19) 

(20) 

(Y ranges from zero to one and 5, is the progress variable at the end of the 
reaction. 
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Equations (17) ( 19) and (20) yield 

d5 
M R - “,r R “8, 

--L = Kf fl 
dt 

c; + z vls.& -K- fi 
i 

cP + 2 v,sL (21) 
,=I V=l r=M+l $=I 

The analytical solution of these differential equations is only known in 
special cases (e.g. for isothermal processes [2]), but in many cases it is 
possible to neglect the reverse reaction. The rate equation then reduces to 

-$ =K+(T); 
d5 

R --y,, 

CP + lx vJ.s 
/=I v= I 

(22) 

These equations are the “kinetic laws” of chemical kinetics. For the 
determination of the concentration of a reactant product at various times, 
these equations must be integrated. In kinetic studies of reactions, it is 
common to fit the calculated expressions into experimental data using 
appropriate parameters (e.g. activation energies, frequency factors, reaction 
orders). Generally, the more information on the reaction that is available, 
the more exactly the unknown parameters can be determined. Some of the 
more important expressions following from eqn. (22) will now be derived. 

A SINGLE CHEMICAL REACTION 

A single reaction without reverse reaction 

The rate of reaction of a single chemical reaction without reverse reaction 
will first be discussed. The rate equation (r = 1, .$, = 5, T = qt + TO) is 

dt 
‘K+(T);!1 (cp+ViS)-y’ dT=q (23) 

This equation corresponds exactly to the commonly used kinetic equation [4] 

dar 
- = i~(T)f(a) 
dT 

Equation (23) may be integrated by separation of variables 

+lT’K+(T)dT=/’ M d’ = g,(E) 
,I 

O m c,” + v,,y’ 
/=I 

The left-hand side, the “exponential integral” 

j’K+(T) dT= irKo e-A dT= K,p(T) 
0 

(24) 

(25) 
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can be presented with good approximation in the analytical form [5] 

P(T) = 
RT2/E _L 

/l + 4( RT/E) 
e RT (26) 

The function g,(t) depends on the order n = XV, of the reaction. 
In general, the concentration of reactant or a product can be determined 

experimentally at various times. For a first-order reaction, the specific 
conversion is given by 

< = cp( 1 - eWJCT)), v,=-1 (27) 

for a second-order by 

5 = cpc; 
1 _ e(+&J(T) 

7 v,=v2= -1 

c:- c, e 
0 (cp--c;)J(T) 

or 

JJ, = -2 

J(T) = +/TTK+(T) dT= $[p(T) -p(T,)] 
0 

(28) 

(2% 

These expressions [eqns. (27)-(29)] describe the progress variable 5 as a 
function of the heating rate q [J(T) depends on q] and the initial concentra- 
tions. 

A single reaction with reverse reaction 

For the further development of experimental equipment, it is of interest to 
determine the influence of a reverse reaction on the specific reaction rate. In 
this case, the rate may be expressed as 

An analytical solution of eqn. (30) is only known for isothermal cases 

=t 

(30) 

(31) 

The integral may be calculated by the method of partial fractions. If 5 is 
plotted against t, a curve of the form of Fig. 1 is obtained in the case of a 
first-order reaction. to represents the progress variable at the equilibrium 
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1 2 3 4 t [mm1 

Fig. 1. Slope of the progress variable t(r) as a function of time for a first-order reaction at 
different rate constants K+ and K- and under isothermal conditions. 

state, which can be determined by the law of mass action 

,$ (cp+ v;so)-y~= 5 
Equation (31) for a first-order reactions yields 

(32) 

t(f) = Eo( 1 - e-fK+ +K-)r) 

where &, is given by 

(33) 

(34) 

The initial rate at time t = 0 is denoted by w0 and depends on the initial 
concentrations cp and cy, so that 

dt 
OfJ = dt l=. ’ ( i 

= cOK+ -c;Ic (35) 

K- can be determined from w. if I$ = 0 and K+ can be determined if ci = 0. 
Under non-isothermal conditions, the solution of eqn. (30) is more com- 

plex. A solution of this equation for a first-order reaction (A = B) gives 

1 
5(T)= - e 9 

4 
-LJCT)/Tr[ C~K+ (T’) - ~,OK- (T’)] e$‘c7’) d T’ 

with 

J(T) = /r[ K+ (T’) + K- (T’)] dT’ (37) 
7;) 

(36) 

The equilibrium conversion to(T) is also a function of temperature. If the 
temperature T is much greater than E+/R, 5 approaches to”, which can be 
expressed as 

5;= 
cpK0’ - c;K; 

K,++K, 
(38) 
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In Fig. 2, possible examples are given schematically. The slope of the curve 
d(/dT, the rate of reaction, is not always positive. This is an interesting 
result for the interpretation of experimental data [6]. 

Fig. 2. Variation of the equilibrium conversion t,,(T) under non-isothermal conditions and 
the slope of the resulting progress variable t(T) and conversion rate dt/dT, respectively. 

Qualitatively similar results are obtained for more complicated reactions. 
However, the integration of the corresponding differential equations is 
difficult or impossible in most cases, e.g. second-order reactions yield 
Riccati-differential equations which can only be integrated in special cases 
[7]. A third-order reaction yields a differential equation of Abels type [7]. 

COUPLED CHEMICAL REACTIONS 

Analytical solutions of the kinetical equations 

An analytical solution of the differential equations of coupled chemical 
reactions cannot be given in most cases. Only in the case of the simplest 
competitive and consecutive reactions is the solution known. In the case of 
competitive first-order reactions, represented as 

B, --, 4 

I% -, B3 
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the rate equations at linear heating rate can be expressed as 

5% = $K;(C;-& -t&- . . . 
dT -S,> 

d52 _ 1 
-z-q 

-K,f(c$-6, -&- . ..-6.) 

d&_ 1 
dT 

- qK:(Cp-&+ . ..-(.) 

From these equations follow 

t,(T) = $/?j+ (T’) epJcT’) dT 
0 

(39) 

and 

~,+52+...+E,=cp(l-e-J(T)) 

with 

J(T)= $I:[K:(T’)+K;(T’)f...+K;(T’)] dT 
0 

(41) 

(42) 

The rate-equations for consecutive first-order reactions which can be repre- 
sented as 

B,+BZ-+B3...B,,+B,+1 

may be expressed as 

d& _ 1 -- 
dT ,K.t(CnO+En-, -s,> 

From these equations follow 

6, = cf(l - e-J1(T)) 

ePJ2CT) 
J 

‘K; (T’)[ct + t,(T’)] eJ2’r) dT 
To 

e--J”v) I:K,+(T’)[c,O+E,,_,(T’)] eJ”(T’)dT’ 
0 

(43) 

(44 

(45) 

(46) 
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with 

J,(T) = +/rk:(T’) dT 
0 

These equations express the influence of all concentrations upon the rate of 
a single reaction [8]. The dependence of the concentration ck upon the 
temperature may be expressed by means of the progress variables as 

R 

(47) 

In this way, Koch [l] found the equations for two competitive and two 
consecutive first-order reactions. 

Simultaneous consecutive first- and second-order reactions 

The simultaneous first- and second-order reactions can be represented as 

(a) B, + B, + B, + B4 

In this case the rate may be expressed as 

(48) 

3-1 
dT - ,K:(c,O+C,-b)(c%) 

Integration yields 

t,(T) = cp( 1 - eCJl(r)) 

5,(T) = e: - 
COe-GU-) 

3 

c; T 
1 + 4 /r Kz (T’) evGCT’) dT’ 

0 

J,(T) and G(T) are given as 

J,(T) = !-jTTK:(T’) dT’ 
0 

G(T)= $~~TK;(T’)[~;-~~+~l(T’)] dT’ 
0 

(b) B, + B, + B, --) B4 

3-I 
dT 

- -$cp -6,>(c;-52) 

d52 _ 1 
- --+:+&-El) 
dT 

(49) 

(50) 

(51) 

(52) 
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E,(T) = 
($; I 1 - e(4-4v,(T) 1 
c!j-cl e 0 (cFcW,(T) 

with 

4,2(T) = ;jTTK:,(T’) dT’ 
0 

(c) B, + B, + B,, B, + B4 + B, 

d5,_1 
dT 

- ;K:(cp -~A+~*) 

db _ 1 - - 
dT ,G(c,o+& -&)(c,“-52) 

C,(T) = 

+; 
[ 
1 - e(+CW,,(r) 1 

0 
c2 

- cO e(4-&v,(~) 
1 

52(T) = c: - 

c; e-W) 

1 + $/TTKl(T’) eCGCT’)dT’ 
0 

with 

J,(T) = +/TTK:(T’) dT’ 
0 

G(T)= ~~T~:(T’)[~,0-~~+5,(T’)] dT’ 
0 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

The analytical solutions are of particular interest because it is easier to 
estimate the dependence of the reaction rate on the parameters which can be 
readily influenced by the heating rate or the initial concentrations. 

Mathematically, analytical solutions can be calculated more easily by 
means of the non-linear heating rate. Solutions are given for first- and 
second-order reactions by Koch [ 11. However, these methods were dropped 
in favour of the experimentally more suitable linear heating technique 
because the complete values for the exponential integrals are available. 

For the examination of the kinetic parameters calculated with the help of 
linear heating rates, the non-linear heating investigation will obtain more 
importance in the future because the non-linear heating programmes can be 
adapted to the parameters obtained by the linear heating rate. Only if the 
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results of different heating programmes are consistent with each other will 
the correct interpretation be most probable. 

Numerical solutions of the kinetic equations 

Numerical calculations for several chemical reactions help to obtain more 
information about the differences of the reaction processes of different 
models (different reaction order, coupled reaction and so on). For compari- 
son of data, the same kinetic parameters (frequence factor Kl and the 
activation energy E), the same heating rate and the same initial concentra- 
tions are used in different models. The initial concentrations are equal to the 
stoichiometric coefficients, whereas the concentrations of the final product 
are zero at the start of reaction. Furthermore, the following values are used. 

I 

C 

d 

9 

. 

i 
9 

k 

: 
1: 
1, 
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? 
I’ 
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h 8 n . . . 
: 

. I LL- 
98 

A 
A 

99 

JL ‘I 
: : 

‘\_ 

F JL ‘1 
_’ ’ 

Fig. 3. Schematic representation of the conversion rate curves as a function of the tempera- 
ture at different kinetic equations with E,=84 kJ mole-‘, El/E, =0.8, 0.9, 1, 1.1, 1.2, 

E,/E, = 1, 1.2, and 4 =6 K min-‘. 
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Kz = 1018 set-’ 

E,=84kJmoleC’ E,/E,=O.S; 0.9; 1; 1.1; 1.2 

E3/E,= 1; 1.2 

q=6Kmin-’ 

The reactions and the rate equations are given in eqns. (39), (43), (48) (52) 
and (56). A summary of the rate curves is given in Fig. 3. 

DISCUSSION 

Two factors determine the interpretation of the experimental results, the 
physical reality of the model chosen and the difference of numerical values 
for different models in connection with the model chosen. 

For discussion, we must examine in which cases the model of homoge- 
neous reactions can be applied to solid state reactions. Many experimental 
results show that this model cannot be accepted for the interpretation of 
solid state reactions. Examples for “quasi-homogeneous” reactions in the 
solid state are order-disorder phase transformations, but the decomposition 
of solids can also be discussed in this way if the rate of formation of nuclei 
and the diffusion rate are large in comparison with the rate of chemical 
reaction, i.e. the concentrations of the reactants are dominant in the reaction 
rate. 

If the concept of homogeneous reaction is valid, the calculations show 
that, in the case of concurrent reactions [e.g. eqn. (39)], only one maximum 
of the reaction rate can be observed (Fig. 4). This result is important for the 
experimental investigations and the further development of analytical equip- 
ment. Furthermore, the results of the calculations for different kinetic 

T 

Fig. 4. The conversion rate curves of the competitive reactions B, - B,, B, - B, as functions 
of the temperature at different values of the activation energy (Fig. 3). 
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equations allow the conclusion that, generally, the analysis of complex 
reactions requires selective measuring methods, as is shown, for example, in 
detail in Fig. 5. If integral measuring methods are used as TG and DTA, in 

1 

T 

‘4= Ez 
k.=lO' 

Fig. 5. The conversion rate curves of different complex kinetic equations as functions of the 
temperature in the case of E, = E, and K, = K,. 1. reaction of first-order B, -BB,; 2. 
competitive reaction of first order B, -B,, B, -B,; 3. consecutive reaction of first and 

second order B, -) B, , B, + B, - B4; 4, consecutive reaction of first order B, -B,. B, - B,: 5, 
consecutive reaction of second and first order B, +B, -B,, B, -B4: 6, competitive reaction 
of first and second order B, -B,, B, + B, -B4; 7. competitive and consecutive reaction of 
first and second order B, - B,, B, + B, -BB,; 8, competitive reaction of second order 
B,+Bz+B.,, B,+B, -B,; 9, competitive and consecutive reaction of second order B, + B, - 

B,, B, +B, -B4; 10, consecutive reaction of first order B, -B,, B, -B,. B, - B4. 

- 

____ 10bjm1n 

L 

uul 150 200 250 Tl°Cl 

Fig. 6. Thermal decomposition of K,Mg(SO,),.4 H,O at different heating rates. 
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principle, by external factors (heating rate, sample size, etc.) the separation 
of the single reaction steps cannot be attained. 

Further, an interesting result was obtained in the case of consecutive 
reactions, e.g. the decomposition of crystal hydrates. For such reactions, as a 
rule, the stoichiometric coefficients were determined experimentally from the 
slope of TG curves [9]. According to our experiments [ 10,l l] and ref. 12, the 
step in the TG curves does not always correspond to the stoichiometric 
relations. 

A reexamination of the decomposition of leonite K,Mg(SO,), .4 H,O by 
means of a high sensitivity thermobalance (Thermoanalyzer TAl, Mettler 
Instruments A.G., Switzerland) under different experimental conditions 
yielded the following results. (a) The total weight loss does correspond 
exactly with the theoretical loss of 4 H,O molecules (Fig.6); (b) the 
minimum of the reaction rate does not correspond to the loss of two 
molecules of water; and (c) the difference between the two reaction steps is 
higher the slower the heating rate. 

As the theoretical rate curves show, separation of single reaction steps is 
possible only by fixed kinetic parameters. In general, it can be expected that 
in the case of consecutive reactions, the steps in the TG curves do not 
exactly represent stoichiometric relations. Apparently “non-stoichiometric” 
intermediates result in many cases because the rate curves overlap one 
another. 
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